GSFC JPSS CMO January 16, 2015 Released Effective Date: October 23, 2014 Revision B Joint Polar Satellite System (JPSS) Ground Project Code 474 474-00448-01-15 # Joint Polar Satellite System (JPSS) Algorithm Specification Volume I: Software Requirement Specification (SRS) for the Surface Reflectance Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration Revision B # Joint Polar Satellite System (JPSS) Algorithm Specification Volume I: Software Requirement Specification (SRS) for the Surface Reflectance JPSS Review/Approval Page | Prepared By: | | |---|----------| | | | | JPSS Ground System | | | (Electronic Approvals available online at https://jpssmis.gsfc.nasa.gov/frontmenu | dsp.cfm) | | Approved By: | | | Robert M. Morgenstern | Date | | JPSS Ground Project Mission Systems Engineering Manager (Electronic Approvals available online at https://jpssmis.gsfc.nasa.gov/frontmenu | dsp.cfm) | | Approved By: | | | | | | Daniel S. DeVito | Date | | JPSS Ground Project Manager | don of m | | (Electronic Approvals available online at https://jpssmis.gsfc.nasa.gov/frontmenu | asp.ctm) | Goddard Space Flight Center Greenbelt, Maryland Revision B # **Preface** This document is under JPSS Ground Project configuration control. Once this document is approved, JPSS approved changes are handled in accordance with Class I and Class II change control requirements as described in the JPSS Configuration Management Procedures, and changes to this document shall be made by complete revision. Any questions should be addressed to: JPSS Configuration Management Office NASA/GSFC Code 474 Greenbelt, MD 20771 Revision B # **Change History Log** | Revision | Effective Date | Description of Changes (Reference the CCR & CCB/ERB Approve Date) | | | |----------|----------------|--|--|--| | Rev- | Aug. 29, 2013 | This version incorporates 474-CCR-13-1186 which was approved by JPSS Ground ERB on the effective date shown. | | | | Rev A | Jan 23, 2014 | This version incorporates 474-CCR-13-1435 and 474-CCR-13-1360 which was approved by JPSS Ground ERB on the effective date shown. | | | | Rev A1 | Oct 23, 2014 | This version incorporates 474-CCR-14-2091 which was approved by the JPSS Ground ERB for CO10 on the effective date shown. | | | | Rev B | Oct 23, 2014 | This version incorporates 474-CCR-14-1721, 474-CCR-14-1741, 474-CCR-14-1781 and 474-CCR-14-2077 which was approved by JPSS Ground ERB on the effective date shown. | | | Revision B # **List of TBx Items** | TBx | Type | ID | Text | Action | |------|------|----|------|--------| | None | | | | | # Revision B # **Table of Contents** | 1 | Intro | duction | 1 | |------|-------|---|----| | | 1.1 | Identification | 2 | | | 1.2 | Algorithm Overview | 2 | | | 1.3 | Document Overview | 2 | | 2 | Relat | ted Documentation | 3 | | | 2.1 | Parent Documents | 3 | | | 2.2 | Applicable Documents | 3 | | | 2.3 | Information Documents | 3 | | 3 | Algo | orithm Requirements | 5 | | | 3.1 | States and Modes | 5 | | | | 3.1.1 Normal Mode Performance | .5 | | | | 3.1.2 Graceful Degradation Mode Performance | .5 | | | 3.2 | Algorithm Functional Requirements | 6 | | | | 3.2.1 Product Production Requirements | .6 | | | | 3.2.2 Algorithm Science Requirements | .6 | | | | 3.2.3 Algorithm Exception Handling | 6 | | | 3.3 | External Interfaces | 7 | | | | 3.3.1 Inputs | .7 | | | | 3.3.2 Outputs | 1 | | | 3.4 | Science Standards | 1 | | | 3.5 | Metadata Output | 1 | | | 3.6 | Quality Flag Content Requirements | 1 | | | 3.7 | Data Quality Notification Requirements | 1 | | | 3.8 | Adaptation1 | 1 | | | 3.9 | Provenance Requirements | 1 | | | 3.10 | Computer Software Requirements | 1 | | | 3.11 | Software Quality Characteristics | 2 | | | 3.12 | Design and Implementation Constraints | 2 | | | 3.13 | Personnel Related Requirements | 2 | | | 3.14 | Training Requirements | 2 | | | 3.15 | Logistics Related requirements | 2 | | | 3.16 | Other Requirements | 2 | | | 3.17 | Packaging Requirements | 2 | | | 3.18 | Precedence and Criticality | 2 | | Anne | endix | A Requirements Attributes 1 | 3 | 474-00448-01-15 Effective Date: October 23, 2014 # Revision B # **List of Figures** | Figure: 3-1 | Surface Reflectance Data Flows | 8 | |-------------|---|---| | | List of Tables | | | Table: 1-1 | JPSS Ground System Services | 2 | | | Systems Resource Flow Matrix: Surface Reflectance | | Revision B ### 1 Introduction The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation program that acquires and distributes global environmental data primarily from multiple polar-orbiting satellites. The program plays a critical role in NOAA's mission to understand and predict changes in weather, climate, oceans and coasts, and the space environment, which support the Nation's economy and protect lives and property. JPSS polar-orbiting satellites provide continued environmental observation that is currently performed by NOAA Polar Operational Environment Satellites (POES). The first JPSS satellite mission, the Suomi National Polar-orbiting Partnership (S-NPP) satellite, was successfully launched in October 2011. It will be followed by two JPSS satellites: JPSS-1, planned for launch in fiscal year (FY) 2017, with JPSS-2 to follow in FY2022. In addition to the JPSS Program's own satellites operating in the 1330 Local Time of the Ascending Node (LTAN) orbit, NOAA also leverages the Polar Free Flyer (PFF), another NOAA/ National Aeronautics and Space Administration (NASA) collaboration, and partner assets for better global coverage. These partner assets include the Department of Defense (DoD) operational weather satellites (in the 1730 – 1930 LTAN orbit), European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteorological Operational (Metop) satellites (in the 2130 LTAN orbit) and Japanese Aerospace Exploration Agency (JAXA) Global Change Observation Mission-Water (GCOM-W) satellites (in the 1330 LTAN orbit). JPSS routes Metop data from the McMurdo Station, Antarctica to the EUMETSAT facility in Darmstadt, Germany and EUMETSAT provides Metop data to NOAA. For GCOM, JPSS routes the GCOM-W data from Svalbard, Norway through the NOAA Satellite Operations Facility (NSOF) in Suitland, MD to the JAXA facility in Japan. The JPSS program also processes GCOM-W data and delivers GCOM-W products to the JPSS users who have JAXA permissions. The JPSS Program provides data acquisition and routing support to the Defense Meteorological Satellite Program (DMSP), the Coriolis Program, National Science Foundation (NSF), as well as the NASA Space Communication and Navigation (SCaN)-supported missions, which include the Earth Observing System (EOS). Moreover, the JPSS Program will operate the Polar Free Flyer satellite to accommodate the Total and Spectral solar Irradiance Sensor (TSIS) and service instruments such as Advanced Data Collection System (A-DCS), Search and Rescue Processor (SARP) and Search and Rescue Repeater (SARR). As part of the agreements for the use of McMurdo Station, JPSS will provide communications/network services for the NSF between McMurdo Station, Antarctica and Centennial, Colorado. As a multi-mission ground infrastructure, the JPSS Ground System supports the heterogeneous constellation of the before-mentioned polar-orbiting satellites both within and outside the JPSS Program through a comprehensive set of services as listed in Table 1-1. Revision B Table: 1-1 JPSS Ground System Services | Service | Description | |--|---| | Enterprise Management and | Provides mission management, mission operations, ground operations, contingency | | Ground Operations | management and system sustainment | | Flight Operations | Provides launch support and early orbit operations, telemetry and commanding, orbital operations, mission data playback, payload support, flight software upgrade, flight vehicle simulation, and disposal at the end of mission life | | Data Acquisition | Provides space/ground communications for acquiring mission data | | Data Routing | Provides routing of telemetry, mission and/or operations data through JPSS' global data
network | | Data Product Generation | Provides the processing of mission data to generate and distribute raw, sensor, environmental, and ancillary data products | | Data Product Calibration and
Validation | Provides calibration and validation of the data products | | Field Terminal Support | Provides development and operational support to the Field Terminal users | # 1.1 Identification This SRS provides requirements for the Surface Reflectance Intermediate Product. # 1.2 Algorithm Overview Surface reflectance is retrieved for VIIRS reflective M-band and I-bands. The algorithm applies corrections for atmospheric absorption, scattering, thin cirrus, glare, surface properties, and solar geometry. # 1.3 Document Overview | Section | Description | | | |------------|---|--|--| | Section 1 | Introduction – Provides a brief overview of the JPSS Ground System and the relevant | | | | | algorithm, as reference material only. | | | | Section 2 | Related Documentation – Lists related documents and identifies them as Parent, | | | | | Applicable, or Information Documents such as, MOAs, MOUs, technical | | | | | implementation agreements, as well as Data Format specifications. This section also | | | | | establishes an order of precedence in the event of conflict between two or more | | | | | documents. | | | | Section 3 | Algorithm Requirements – Provides a summary of the science requirements for the | | | | | products covered by this volume. | | | | Appendix A | Requirements Attributes – Provides the mapping of requirements to verification | | | | | methodology and attributes. | | | Revision B #### 2 Related Documentation The latest JPSS documents can be obtained from URL: https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm. JPSS Project documents have a document number starting with 470, 472 or 474 indicating the governing Configuration Control Board (CCB) (Program, Flight, or Ground) that has the control authority of the document. ### 2.1 Parent Documents The following reference document(s) is (are) the Parent Document(s) from which this document has been derived. Any modification to a Parent Document will be reviewed to identify the impact upon this document. In the event of a conflict between a Parent Document and the content of this document, the JPSS Program Configuration Change Board has the final authority for conflict resolution. | Doc. No. | Document Title | | |-----------------|--|--| | 470-00067 | Joint Polar Satellite System (JPSS) Ground System Requirements Document | | | | (GSRD) | | | 470-00067-02 | Joint Polar Satellite System (JPSS) Ground System Requirements Document | | | | (GSRD), Volume 2 - Science Product Specification | | | 474-00448-01-01 | Joint Polar Satellite System (JPSS) Algorithm Specification Volume I: Software | | | | Requirements Specification (SRS) for the Common Algorithms | | # 2.2 Applicable Documents The following document(s) is (are) the Applicable Document(s) from which this document has been derived. Any modification to an Applicable Document will be reviewed to identify the impact upon this document. In the event of conflict between an Applicable Document and the content of this document, the JPSS Program Configuration Change Board has the final authority for conflict resolution. | Doc. No. | Document Title | | |-----------------|--|--| | 474-00034 | Joint Polar Satellite System (JPSS) Operational Algorithm Description Document | | | | For VIIRS Surface Reflectance Algorithm Theoretical Basis Document (ATBD) | | | 474-00448-02-15 | Joint Polar Satellite System (JPSS) Algorithm Specification Volume II: Data | | | | Dictionary for the Surface Reflectance | | | 474-00448-04-15 | JPSS Algorithm Specification Volume IV: Software Requirements Specification | | | | Parameter File (SRSPF) for the Surface Reflectance | | #### 2.3 Information Documents The following documents are referenced herein and amplify or clarify the information presented in this document. These documents are not binding on the content of this document. | Doc. No. | Document Title | |-----------|---| | 474-00333 | Joint Polar Satellite System (JPSS) Ground System (GS) Architecture Description | | | Document (ADD) | | 474-00054 | Joint Polar Satellite System (JPSS) Ground System (GS) Concept of Operations | | | (ConOps) | | 470-00041 | Joint Polar Satellite System (JPSS) Program Lexicon | 474-00448-01-15 Effective Date: October 23, 2014 | Doc. No. | Document Title | |-----------------|---| | 474-00448-03-15 | Joint Polar Satellite System (JPSS) Algorithm Specification Volume III: | | | Operational Algorithm Description (OAD) for the Surface Reflectance | | 429-05-02-42 | Joint Polar Satellite System (JPSS) Mission Data Format Control Book for NPP | | 472-00251 | Joint Polar Satellite System (JPSS) Mission Data Format Control Book for JPSS-1 | Revision B # 3 Algorithm Requirements #### 3.1 States and Modes #### 3.1.1 Normal Mode Performance SRS.01.15_267 The VIIRS Surface Reflectance IP algorithm shall calculate the surface reflectance with an uncertainty of 0.005 at a measured reflectance value of 0.01, and an uncertainty of 0.05 at a measured value of 1.0. *Rationale:* The measurement uncertainty values support the uncertainty values of the downstream products. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 # 3.1.2 Graceful Degradation Mode Performance SRS.01.15_269 The VIIRS Surface Reflectance software shall use NCEP extended forecast data for fallback processing when the relevant NCEP current forecast input is not available. *Rationale:* The IP software through its algorithm must generate products using back up data sources to meet the graceful degradation requirement. These degraded products are not required to meet the algorithm performance requirements. This software currently uses NCEP Total Column Ozone, Total Column Precipitable Water, and Adjusted Surface Pressure forecasts. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 SRS.01.15_272 The VIIRS Surface Reflectance software shall use NAAPS Total Optical Depth [750m Granulation] current forecast data for fallback processing when the VIIRS Aerosol Optical Thickness IP input is not available. *Rationale:* The IP software through its algorithm must generate products using back up data sources to meet the graceful degradation requirement. These degraded products are not required to meet the algorithm performance requirements. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 SRS.01.15_282 The VIIRS Surface Reflectance software shall use NAAPS Total Optical Depth [750m Granulation] extended forecast data for fallback processing when the VIIRS Aerosol Optical Thickness IP input and NAAPS Total Optical Depth current forecast data is not available. *Rationale:* The IP software through its algorithm must generate products using back up data sources to meet the graceful degradation requirement. These degraded products are not required to meet the algorithm performance requirements. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 SRS.01.15_273 The VIIRS Surface Reflectance IP software shall use GACP Aerosol climatology [750m Granulation] for fallback processing when the AOT IP and Revision B NAAPS Total Optical Depth current and extended forecast inputs are not available. *Rationale:* The IP software through its algorithm must generate products using back up data sources to meet the graceful degradation requirement. These degraded products are not required to meet the algorithm performance requirements. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 # 3.2 Algorithm Functional Requirements # **3.2.1 Product Production Requirements** Not applicable. # 3.2.2 Algorithm Science Requirements SRS.01.15_274 The VIIRS Surface Reflectance IP software shall incorporate a computing algorithm provided for I-band surface reflectances for the reflective I-bands specified in the JPSS Algorithm Specification Vol IV: SRSPF for the Surface Reflectance (474-00448-04-15) <SurfRefIIP><iBands>. *Rationale:* The IP software through its computing algorithm must produce Surface Reflectance IP in accordance with the JPSS VIIRS Surface Reflectance ATBD (474-00034). Mission Effectivity: S-NPP, JPSS-1, JPSS-2 SRS.01.15_275 The VIIRS Surface Reflectance IP software shall incorporate a computing algorithm provided for M-band surface reflectances for the reflective M-bands specified in the JPSS Algorithm Specification Vol IV: SRSPF for the Surface Reflectance (474-00448-04-15) <SurfRefIIP><mBands>. *Rationale:* The IP software through its computing algorithm must produce Surface Reflectance IP in accordance with the JPSS VIIRS Surface Reflectance ATBD (474-00034). Mission Effectivity: S-NPP, JPSS-1, JPSS-2 # 3.2.3 Algorithm Exception Handling SRS.01.15_276 The VIIRS Surface Reflectance IP software shall set <FillField> to <FillValue> according to <FillCondition> specified in the JPSS Algorithm Specification Vol IV: SRSPF for the Surface Reflectance (474-00448-04-15) <SurfRefIIP><fill>. *Rationale:* The IP software through its computing algorithm must fill the surface reflectance IP values based on the established fill conditions to satisfy exclusion and fill conditions. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 Revision B #### 3.3 External Interfaces # **3.3.1** Inputs SRS.01.15_277 The VIIRS Surface Reflectance IP software shall incorporate inputs as specified in Table 3-1. *Rationale:* The IP generation software must be able to receive and process the resource interaction items shown in Table 3-1 in order to produce the intended VIIRS Surface Reflectance IP product. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 SRS.01.15_283 The VIIRS Surface Reflectance IP software shall ingest tables and coefficients formatted in accordance with Section 7 of the JPSS Algorithm Specification Vol II: Data Dictionary for Surface Reflectance (474-00448-02-15). *Rationale:* This defines the formats for Lookup Tables, and Processing Coefficients for input into the algorithm module. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 Table 3-1 and Figure 3-1 are best viewed together since they describe the processes governed by this SRS in different ways. The figure diagrams the data flowing into, out of, and within the code governed by this SRS. The table lists these same data interactions as well as all downstream dependencies for outputs from this SRS. Each row in the table describes a single software interaction – data flowing from one software item to another. The data is listed in the first column. The second column includes the mnemonic or short name for the data. Blanks indicate there is no mnemonic. The third (Source SRS) and fourth (Receiving SRS) columns contain the SRS that generates the data product(s) in the first column, and the SRS that receives those products. The final two columns (Sending Function and Receiving Function) contain the actual function name in Algorithm Development Library (ADL) that produces those products, and the function that inputs those products. The SRS's titled "Ingest MSD" and "Store/Retrieve" are non-existent SRS's functioning as data handling for the IDPS. The software functions "Store Products" and "Retrieve Products" are similar non-existent functions that operate as IDPS data handling. 474-00448-01-15 Effective Date: October 23, 2014 Revision B Figure: 3-1 Surface Reflectance Data Flows Table: 3-1 Systems Resource Flow Matrix: Surface Reflectance | Data Product Name | Mnemonic or Short
Name, if applicable | Source SRS | Receiving SRS | Sending Function | Receiving Function | |--|--|---------------------|---------------------|---|------------------------| | VIIRS_Gran_Ozone | | Grid Gran | Surface Reflectance | ProAncViirsGranulateO zone | ProEdrViirsSurfReflect | | VIIRS_Gran_SurfPres | | Grid Gran | Surface Reflectance | ProAncViirsGranulateS urfPres | ProEdrViirsSurfReflect | | VIIRS_Gran_PW | | Grid Gran | Surface Reflectance | ProAncViirsGranulateP recipWater | ProEdrViirsSurfReflect | | CloudMask_IP | IMPE_CMIP_C0030 | Cloud Mask | Surface Reflectance | ProEdrViirsCM | ProEdrViirsSurfReflect | | VIIRS-AOT-IP
VIIRS-AEROS-MDL-
IP | IMPE_VAOT_R0100
IMPE_VAMI_R0100 | Aerosol | Surface Reflectance | ProEdrViirsAerosol | ProEdrViirsSurfReflect | | SRCoeffs_LUT AOTValues_LUT SolZenAngles_LUT SatZenAngles_LUT IncScatAngles_LUT ScatAngDims_LUT DownTrans_LUT SphAlb_LUT AtmReflect_LUT | NP_NU-LM0233-064
NP_NU-LM0233-070
NP_NU-LM0233-068
NP_NU-LM0233-067
NP_NU-LM0233-069
NP_NU-LM0233-066
NP_NU-LM0233-071
NP_NU-LM0233-065 | Anc and Aux Data | Surface Reflectance | Auxiliary Data - Spacecraft Data and LUTs | ProEdrViirsSurfReflect | | Image_Band01 Image_Band02 Image_Band03 Moderate_Band01 Moderate_Band02 Moderate_Band03 Moderate_Band04 Moderate_Band05 Moderate_Band07 Moderate_Band08 Moderate_Band10 Moderate_Band11 Geolocation_Mod | SDRE-VI01-C0030
SDRE-VI02-C0030
SDRE-VI03-C0030
SDRE-VM01-C0030
SDRE-VM02-C0030
SDRE-VM04-C0030
SDRE-VM05-C0030
SDRE-VM07-C0030
SDRE-VM07-C0030
SDRE-VM10-C0030
SDRE-VM10-C0030
SDRE-VM11-C0030
VIIRS-MOD-RGEO | Store/Retrieve | Surface Reflectance | Retrieve Products | ProEdrViirsSurfReflect | | SurfReflect_IP | IMPE_VISR_R0100 | Surface Reflectance | Surface Type | ProEdrViirsSurfReflect | ProEdrViirsSurfType | | SurfReflect_IP | IMPE_VISR_R0100 | Surface Reflectance | Vegetation Index | ProEdrViirsSurfReflect | ProEdrViirsVI | | SurfReflect_IP | IMPE_VISR_R0100 | Surface Reflectance | Surface Albedo | ProEdrViirsSurfReflect | ProEdrViirsLandSurfAl | | Data Product Name | Mnemonic or Short
Name, if applicable | Source SRS | Receiving SRS | Sending Function | Receiving Function | | |-------------------|--|---------------------|----------------|------------------------|--|--| | | | | | | bedo | | | SurfReflect_IP | IMPE_VISR_R0100 | Surface Reflectance | Grid Gran | ProEdrViirsSurfReflect | ProGipViirsGranToGri
dDSR | | | SurfReflect_IP | IMPE_VISR_R0100 | Surface Reflectance | Grid Gran | ProEdrViirsSurfReflect | ProGipViirsGranToGri
dMonthlySRBTVI | | | SurfReflect_IP | IMPE_VISR_R0100 | Surface Reflectance | Store/Retrieve | ProEdrViirsSurfReflect | Store Products | | Revision B # 3.3.2 Outputs SRS.01.15_278 The VIIRS Surface Reflectance IP software shall generate the VIIRS Surface Reflectance IP product in conformance with the XML format file in Attachment A.1 of the JPSS Algorithm Specification Vol II: Data Dictionary for Surface Reflectance (474-00448-02-15). Rationale: The product profile must conform to the XML format file. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 SRS.01.15_279 The VIIRS Surface Reflectance IP software shall use the terrain-corrected geologation for the VIIRS M-band. *Rationale:* The product must be associated with the terrain-corrected geolocation to meet the geolocation accuracy requirement. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 #### 3.4 Science Standards Not applicable. # 3.5 Metadata Output Not applicable. # 3.6 Quality Flag Content Requirements SRS.01.15_280 The VIIRS Surface Reflectance IP software shall report for each <FlagScope> quality flags using <FlagLogic> as specified in the JPSS Algorithm Specification Vol IV: SRSPF for the Surface Reflectance (474-00448-04-15) <SurfRefIIP><OF>. *Rationale:* Quality Flags must be generated based on the established flag conditions, logic, and format. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 # 3.7 Data Quality Notification Requirements Not applicable. # 3.8 Adaptation Not applicable. ### 3.9 Provenance Requirements Not applicable. # 3.10 Computer Software Requirements Not applicable. Revision B # 3.11 Software Quality Characteristics Not applicable. # 3.12 Design and Implementation Constraints SRS.01.15_281 The JPSS Common Ground System shall execute the VIIRS Surface Reflectance IP algorithm. *Rationale:* The CGS must incorporate algorithm changes that are supplied by the algorithm vendor. Mission Effectivity: S-NPP, JPSS-1, JPSS-2 # 3.13 Personnel Related Requirements Not applicable. # 3.14 Training Requirements Not applicable. # 3.15 Logistics Related requirements Not applicable. # 3.16 Other Requirements Not applicable. # 3.17 Packaging Requirements Not applicable. # 3.18 Precedence and Criticality Not applicable. Revision B # Appendix A. Requirements Attributes The Requirements Attributes Table lists each requirement with CM-controlled attributes including requirement type, mission effectivity, requirement allocation(s), block start and end, method(s) for verifying each requirement, verification events, etc. | Req ID | Requirement Text | Level
3
Type | Product
Type | Mission
Effectivity | Allocated
To | Block
Start | Block
End | Block
2.0.0 VM | Block
2.1.0
VM | Verification
Event | |---------------|--|--------------------|-----------------|---------------------------|-----------------------|----------------|--------------|-------------------|----------------------|----------------------------------| | SRS.01.15_267 | The VIIRS Surface Reflectance IP algorithm shall calculate the surface reflectance with an uncertainty of 0.005 at a measured reflectance value of 0.01, and an uncertainty of 0.05 at a measured value of 1.0. | P | IP | S-NPP
JPSS-1
JPSS-2 | algorithm
provider | 2.0.0 | 3.0.0 | Test | NA | Maturity
Level
Declaration | | SRS.01.15_269 | The VIIRS Surface Reflectance software shall use NCEP extended forecast data for fallback processing when the relevant NCEP current forecast input is not available. | G | IP | S-NPP
JPSS-1
JPSS-2 | CGS | 2.0.0 | 3.0.0 | Inspection | NA | 2.0.0-AAT | | SRS.01.15_272 | The VIIRS Surface Reflectance software shall use NAAPS Total Optical Depth [750m Granulation] current forecast data for fallback processing when the VIIRS Aerosol Optical Thickness IP input is not available. | G | IP | S-NPP
JPSS-1
JPSS-2 | CGS | 2.0.0 | 3.0.0 | Inspection | NA | 2.0.0-AAT | | SRS.01.15_282 | The VIIRS Surface Reflectance software shall use NAAPS Total Optical Depth [750m Granulation] extended forecast data for fallback processing when the VIIRS Aerosol Optical Thickness IP input and NAAPS Total Optical Depth current forecast data is not available. | G | IP | S-NPP
JPSS-1
JPSS-2 | CGS | 2.0.0 | 3.0.0 | Inspection | NA | 2.0.0-AAT | | Req ID | Requirement Text | Level
3
Type | Product
Type | Mission
Effectivity | Allocated
To | Block
Start | Block
End | Block
2.0.0 VM | Block
2.1.0
VM | Verification
Event | |---------------|---|--------------------|-----------------|---------------------------|-----------------------|----------------|--------------|-------------------|----------------------|----------------------------------| | SRS.01.15_273 | The VIIRS Surface Reflectance IP software shall use GACP Aerosol climatology [750m Granulation] for fallback processing when the AOT IP and NAAPS Total Optical Depth current and extended forecast inputs are not available. | G | ΙΡ | S-NPP
JPSS-1
JPSS-2 | CGS | 2.0.0 | 3.0.0 | Inspection | NA | 2.0.0-AAT | | SRS.01.15_274 | The VIIRS Surface Reflectance IP software shall incorporate a computing algorithm provided for I-band surface reflectances for the reflective I-bands specified in the JPSS Algorithm Specification Vol IV: SRSPF for the Surface Reflectance (474-00448-04-15) <surfrefiip><ibands>.</ibands></surfrefiip> | Ap | IP | S-NPP
JPSS-1
JPSS-2 | algorithm
provider | 2.0.0 | 3.0.0 | Inspection | NA | Maturity
Level
Declaration | | SRS.01.15_275 | The VIIRS Surface Reflectance IP software shall incorporate a computing algorithm provided for M-band surface reflectances for the reflective M-bands specified in the JPSS Algorithm Specification Vol IV: SRSPF for the Surface Reflectance (474-00448-04-15) <surfrefiip><mbands>.</mbands></surfrefiip> | Ap | IP | S-NPP
JPSS-1
JPSS-2 | algorithm
provider | 2.0.0 | 3.0.0 | Inspection | NA | Maturity
Level
Declaration | | SRS.01.15_276 | The VIIRS Surface Reflectance IP software shall set <fillfield> to <fillvalue> according to <fillcondition> specified in the JPSS Algorithm Specification Vol IV: SRSPF for the Surface Reflectance (474-00448-04-15) <surfrefiip><fill>.</fill></surfrefiip></fillcondition></fillvalue></fillfield> | E | IP | S-NPP
JPSS-1
JPSS-2 | CGS | 2.0.0 | 3.0.0 | Inspection | NA | 2.0.0-AAT | | SRS.01.15_277 | The VIIRS Surface Reflectance IP software shall incorporate inputs as specified in Table 3-1. | I | IP | S-NPP
JPSS-1
JPSS-2 | CGS | 2.0.0 | 3.0.0 | Inspection | NA | 2.0.0-AAT | 474-00448-01-15 Effective Date: October 23, 2014 | Req ID | Requirement Text | Level
3
Type | Product
Type | Mission
Effectivity | Allocated
To | Block
Start | Block
End | Block
2.0.0 VM | Block
2.1.0
VM | Verification
Event | |---------------|--|--------------------|-----------------|---------------------------|-----------------|----------------|--------------|-------------------|----------------------|-----------------------| | SRS.01.15_283 | The VIIRS Surface Reflectance IP software shall ingest tables and coefficients formatted in accordance with Section 7 of the JPSS Algorithm Specification Vol II: Data Dictionary for Surface Reflectance (474-00448-02-15). | Ft | IP | S-NPP
JPSS-1
JPSS-2 | CGS | 2.0.0 | 3.0.0 | Inspection | NA | 2.0.0-AAT | | SRS.01.15_278 | The VIIRS Surface Reflectance IP software shall generate the VIIRS Surface Reflectance IP product in conformance with the XML format file in Attachment A.1 of the JPSS Algorithm Specification Vol II: Data Dictionary for Surface Reflectance (474-00448-02-15). | F | IP | S-NPP
JPSS-1
JPSS-2 | CGS | 2.0.0 | 3.0.0 | Inspection | NA | 2.0.0-AAT | | SRS.01.15_279 | The VIIRS Surface Reflectance IP software shall use the terrain-corrected geolocation for the VIIRS M-band. | Fg | GEO | S-NPP
JPSS-1
JPSS-2 | CGS | 2.0.0 | 3.0.0 | Inspection | NA | 2.0.0-AAT | | SRS.01.15_280 | The VIIRS Surface Reflectance IP software shall report for each <flagscope> quality flags using <flaglogic> as specified in the JPSS Algorithm Specification Vol IV: SRSPF for the Surface Reflectance (474-00448-04-15) <surfrefiip><qf>.</qf></surfrefiip></flaglogic></flagscope> | Q | IP | S-NPP
JPSS-1
JPSS-2 | CGS | 2.0.0 | 3.0.0 | Inspection | NA | 2.0.0-AAT | | SRS.01.15_281 | The JPSS Common Ground System shall execute the VIIRS Surface Reflectance IP algorithm. | Ai | IP | S-NPP
JPSS-1
JPSS-2 | CGS | 2.0.0 | 3.0.0 | Inspection | NA | 2.0.0-AAT |